Statistical Analysis based Hypothesis Testing Method in Biological Knowledge Discovery

نویسندگان

  • Md. Naseef-Ur-Rahman Chowdhury
  • Suvankar Paul
  • Kazi Zakia Sultana
چکیده

The correlation and interactions among different biological entities comprise the biological system. Although already revealed interactions contribute to the understanding of different existing systems, researchers face many questions everyday regarding inter-relationships among entities. Their queries have potential role in exploring new relations which may open up a new area of investigation. In this paper, we introduce a text mining based method for answering the biological queries in terms of statistical computation such that researchers can come up with new knowledge discovery. It facilitates user to submit their query in natural linguistic form which can be treated as hypothesis. Our proposed approach analyzes the hypothesis and measures the p-value of the hypothesis with respect to the existing literature. Based on the measured value, the system either accepts or rejects the hypothesis from statistical point of view. Moreover, even it does not find any direct relationship among the entities of the hypothesis, it presents a network to give an integral overview of all the entities through which the entities might be related. This is also congenial for the researchers to widen their view and thus think of new hypothesis for further investigation. It assists researcher to get a quantitative evaluation of their assumptions such that they can reach a logical conclusion and thus aids in relevant re-searches of biological knowledge discovery. The system also provides the researchers a graphical interactive interface to submit their hypothesis for assessment in a more convenient way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data

Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...

متن کامل

A New Method for Characterization of Biological Particles in Microscopic Videos: Hypothesis Testing Based on a Combination of Stochastic Modeling and Graph Theory

Introduction Studying motility of biological objects is an important parameter in many biomedical processes. Therefore, automated analyzing methods via microscopic videos are becoming an important step in recent researches. Materials and Methods In the proposed method of this article, a hypothesis testing function is defined to separate biological particles from artifact and noise in captured v...

متن کامل

LINEAR HYPOTHESIS TESTING USING DLR METRIC

Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...

متن کامل

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

A New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision

In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1401.2851  شماره 

صفحات  -

تاریخ انتشار 2013